Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 47(2): 289-297, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086976

RESUMO

In this study, the potential of ultrafiltered xylano-pectinolytic enzymatic bleaching approach was investigated, for manufacturing wheat straw-based paper. The enzymatic step was found to be most effective, with xylanase-pectinase dose of 4-1.7 IU/g pulp and time period of 180 min. The absorption spectra of the pulp free filtrate samples obtained after treatment of the pulp with ultrafiltered enzymes showed the removal of more impurities, in comparison to the treatment with crude enzymes. Microscopic analysis also showed the removal of lignin impurities in enzymatically bleached pulp samples. This bleaching approach using enzymes resulted in 27% reduction in ClO2 dose. Ultrafiltered enzymes treated pulp samples also showed improved quality-related parameters, and Gurley porosity, burst index, breaking length, double fold, tear index, and viscosity increased by 19.05, 13.70, 8.18, 29.27, 4.41, and 13.27%, respectively. The lignin content, TDS, TSS, BOD and COD values also decreased in the effluent samples obtained after enzymatic bleaching plus 73% chemical bleaching dose. The BOD and COD values of the effluent samples improved by 23.01 and 23.66%, respectively. Thus, indicating the potential of ultrafiltered xylano-pectinolytic enzymes in reducing pollution during bleaching of wheat straw. This is the first study, mentioning the efficacy of ultrafiltered enzymes in the bleaching of wheat straw-based paper with better optical-strength-related properties and effluent characteristics.


Assuntos
Lignina , Papel , Triticum/química , Endo-1,4-beta-Xilanases/química , Poligalacturonase
2.
3 Biotech ; 13(3): 106, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36875962

RESUMO

This study has been conducted to assess the pulpability of ultrafiltered pectinase and xylanase in pulping of wheat straw. Best biopulping conditions were achieved using 107 and 250 IU of pectinase and xylanase, respectively, per gram of wheat straw, 180 min of treatment period, one gram: 10 m1 material to liquor ratio, 8.5 pH and 55 °C temperature. Ultrafiltered enzymatic treatment improved the pulp yield (6.18%), brightness (17.83%), along with reduced rejections (61.01%) and kappa number (16.95%) as compared to chemically synthesized pulp. Biopulping of wheat straw saved 14% alkali dose, with nearly same optical properties, as obtained under 100% alkali dose. Bio-chemically pulped samples resulted an increase in breaking length, tear index, burst index, viscosity, double fold and Gurley porosity by 6.05%, 18.64%, 26.42%, 7.94%, 21.6% and 15.38%, respectively, in comparison to control pulp samples. Bleached-biopulped samples showed an improvement in breaking length, tear index, burst index, viscosity, double fold number, and Gurley porosity by 7.39%, 3.55%, 28.82%, 9.1%, 53.66%, and 30.95% respectively. Thus, biopulping of wheat straw with ultrafiltered enzymes lowers alkali consumption and also improves the paper quality. This is the first study reporting, eco-friendly biopulping, for producing better quality wheat straw pulp, using ultrafiltered enzymes.

3.
3 Biotech ; 13(2): 61, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36714548

RESUMO

This research aimed to investigate the efficiency of crude xylanase-pectinase in pulping of sugarcane bagasse. Optimum biopulping was obtained, using xylanase-pectinase dose 200-60 IU/g, bagasse/liquid ratio 1:10 and 1.0% Tween 80 concentration at 55 °C temperature, pH 8.5 and period of treatment 180 min. Treatment of sugarcane bagasse samples with these enzymes generated pulp with lower rejections (58.76%), total solids (12.64%), kappa number (47.77%), higher screened pulp yield (10.66%), along with enhanced optical and physical properties, in comparison with a chemical pulp. Bagasse biopulping resulted in a 13% decrease in alkali dose to obtain the optical and physical properties similar to those achieved under the 100% alkali dose. The breaking length, burst factor, tear index, double fold, gurley porosity and viscosity were improved by 15.19, 37.64, 2.47, 37.77, 35 and 23.17%, respectively, after bleaching treatment of biopulped samples. Thus, enzymatic pulping is an eco-friendly environmentally sustainable approach, since it reduces the use of pulping chemicals and simultaneously improves the paper quality. This is the first report, showing pulping of sugarcane bagasse, with crude xylanase-pectinase, produced by an isolate.

4.
Bioprocess Biosyst Eng ; 45(4): 741-747, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35113232

RESUMO

In the current study, pretreatment of sugarcane bagasse has been carried out with ultrafiltered xylano-pectinolytic enzymes, before conventional chemical bleaching process. Optimized enzymatic dose (4 IU xylanase and 1.2 IU pectinase per g of oven dried pulp) and retention time (180 min) were determined on the basis of maximum decrement in kappa number (from 20.93 to 15.32), release of maximum sugars (7.4 mg/g) as well as attainment of maximum brightness (25.1% ISO), whiteness (from - 57.3 to - 41.9) and minimum yellowness (from 48.7 to 35.3) of the pulp samples. Enzymatically treated samples also showed release of phenolic, lignin and hydrophobic compounds in their filtrates. Nearly 30% decrement in the exhaustion of bleaching chemical dose was detected as compared to control samples. The physical properties such as tear index, burst index, double fold number, breaking length, gurley porosity and viscosity of enzymo-chemically treated bagasse pulp samples were improved by 6.68%, 33.86%, 22.92%, 13.43%, 17.5% and 9.64%, respectively. Additionally, a decrement of 36.75% and 28.29% in the values of BOD and COD of the effluents was also noted, which demonstrated the fact that, inclusion of enzymes in chemical based protocols of paper and pulp industries could be a highly beneficial and eco-friendly approach in upcoming decades. This is the first report mentioning the effect of ultrafiltered xylano-pectinolytic enzymes concoction on sugarcane bagasse pulp.


Assuntos
Saccharum , Celulose , Papel , Poligalacturonase
5.
Appl Biochem Biotechnol ; 194(2): 620-634, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34415480

RESUMO

The aim of this study was to evaluate the potential of xylanase-pectinase enzymes in bleaching of wheat straw pulp, just to cut down the toxic wastes, in order to manage the environmental pollution. The appropriate parameters of bleaching were evaluated, and best conditions were xylanase and pectinase dose of 5.0 and 1.66 IU/g of pulp, respectively, along with material to liquid ratio of 1:7.5 (g/ml), temperature 55 °C, treatment time 3 h, Tween-80 1%, and pH 8.5. The release of reducing sugar and other non-cellulosic impurities, phenolic-hydrophobic-lignin was maximum at best bleaching conditions. Prebleaching of wheat straw pulp using these enzymes showed 14.75% decline in kappa number. Enzymatic bleaching plus 100% chemical bleaching also led to 27.90% reduction in yellowness. Using this methodology, the consumption of active chlorine was reduced up to 25%, along with an increase in burst index (7.98%), tear index (3.42%), breaking length (5.30%), viscosity (11.22%), gurley porosity (12.50%), and double-fold number (23.08%), which exhibits a remarkable enhancement in all the properties of pulp treated with enzymes. Microscopic images also confirm the effectiveness of enzymatic treatment in bleaching of wheat straw pulp. BOD and COD values of effluent also decreased by 20.74 and 17.87%, respectively. This research focussing on producing better grade paper using an eco-friendly approach would certainly benefit the paper and pulp industry. This is the first report, depicting bleaching capability of xylanase-pectinase enzymes for soda-anthraquinone pulp of wheat straw.


Assuntos
Celulase
6.
Environ Sci Pollut Res Int ; 28(31): 42990-42998, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34218371

RESUMO

Bio-bleaching effect on bagasse pulp using xylano-pectinolytic enzymes produced by a bacterial species was studied in order to evaluate the potential of these enzymes in paper industry. In this study, action of enzymes was maximum with xylanase/pectinase dose 7/1.75 IU/g, pulp consistency 1:12.5 g/L, pH 8.5, temperature 50° C and 180 min of treatment time. Under the optimized bio-bleaching conditions, removal of reducing sugars (6.15±0.05 mg/L), brightness (16.08%), whiteness (25.54%) and release of chromophores (hydrophobic and phenolic compounds and lignin impurities) were maximum, along with decrease in kappa number (26.28%), and yellowness (27.88%) values were obtained. Improvement in the various physical properties like breaking length (10.28%), burst index (29.55%), tear index (5.02%), double fold (14.89%), Gurley porosity (15%) and viscosity (8.6%), along with the reduction of chlorine dioxide dose by 27%, was also observed. There is also reduction in COD and BOD values of bio-bleached effluents by 27.62% and 20.52%, respectively. This is the first report on bio-bleaching of bagasse pulp using xylano-pectinolytic enzymes.


Assuntos
Poligalacturonase , Saccharum , Celulose , Endo-1,4-beta-Xilanases , Papel
7.
Environ Sci Pollut Res Int ; 28(14): 18284-18293, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33665692

RESUMO

The objective of this study was to check the potential of crude xylano-pectinolytic enzymes in bleaching of rice straw pulp, in order to reduce the toxic waste load for managing the environmental pollution. The xylano-pectinolytic enzymatic bleaching step for delignification was found to be most effective at pulp consistency 1:10 g/ml, xylanase:pectinase dose of 9:4 IU/ml, pH 8.5 and treatment time 180 min at temperature of 55 °C, and resulted in lowering of kappa number of the rice straw pulp by 15.29%. In subsequent bleaching stages, this enzymatic pre-bleaching treatment also resulted in 30% reduction of active chlorine dioxide dose without any loss of optical properties. Significant improvement in various physical properties of the enzymes treated pulp, tear index (15.43%), breaking length (11.11%), double fold number (25.92%), burst index (9.88%) and viscosity (13.63%), and Gurley porosity (39.86%) was also noticed. This approach resulted in reduction of BOD and COD values by 21.07% and 26.57%, respectively. This is the first study on the use of crude xylano-pectinolytic enzymes for bio-bleaching of rice straw pulp.


Assuntos
Oryza , Papel , Poligalacturonase , Compostos de Sódio , Temperatura
8.
Environ Sci Pollut Res Int ; 27(35): 44637-44646, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33063206

RESUMO

In this study, action of ultrafiltered xylano-pectinolytic enzymes from a bacterial strain has been evaluated for bleaching of rice straw soda-anthraquinone pulp. Maximum bio-bleaching effect and release of non-cellulosic impurities were noticed with xylano:pectinolytic enzymes dose of 6.0:2.1-IU/g pulp, treatment time of 180 min at 10% pulp consistency, pH 8.5, and temperature 55 °C. Microscopic images of bio-bleached rice straw pulp also confirmed the efficacy of ultrafiltered enzymes, as bleaching agent. This bio-bleaching treatment resulted in 15.38% and 32% reduction in kappa number and active chlorine dioxide dose, respectively, along with increase in various physical properties, burst index (12.50%), tear index (19.07%), breaking length (14.30%), double fold number (26.31%), Gurley porosity (45.32%) and viscosity (16.17%). This bio-bleaching approach not only improved the pulp quality but also reduced environmental pollution load by decreasing effluent parameters values of BOD and COD by 23.67% and 27.44%, respectively. This study indicates that use of ultrafiltered xylano-pectinolytic synergism for rice straw pulp bleaching will ultimately help in making the process eco-friendly, along with better quality pulp. This is the first report on use of ultrafiltered xylanase and pectinase, produced from a bacterial isolate, for bleaching of rice straw pulp.


Assuntos
Oryza , Endo-1,4-beta-Xilanases , Papel , Poligalacturonase , Temperatura
9.
Environ Sci Pollut Res Int ; 27(35): 44614-44622, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33037542

RESUMO

This research was carried out with an objective to examine the efficacy of ultrafiltered xylano-pectinolytic enzymes in pulping of sugarcane bagasse. Maximum biopulping was achieved with enzyme dose of xylanase (175 IU / g bagasse) and pectinase (75 IU / g bagasse) at treatment period of 180 min. The temperature, pH, and bagasse to liquid ratio for biopulping experiments were kept constant at 55o C, 8.5, and 1:10 (g/ml), respectively. The ultrafiltered biopulping improved chemical pulping, resulted in 25.11%, 9.17% increase in brightness, unscreened pulp production and 11.81, 59.50, and 49.14% decrease in total solids, rejections. and kappa number, respectively. The bagasse biopulping also resulted in 15% decrease of alkali load to attain similar kappa number and optical properties as obtained under 100% alkali dosage. Ultrafiltered biopulped-unbleached samples showed significant increase in breaking length (13.55%), burst index (40.21%), tear index (19.04%), double fold (42.5%), Gurley porosity (28.21%) and viscosity (13.37%) in comparison with non-enzymatically treated control pulp samples. In comparison with non biotreated-bleached pulp samples, ultrafiltered biopulped-bleached samples also resulted in higher burst index (56.80%), breaking length (17.38%), double fold (39.58%), tear index (3.38%), viscosity (30.68%), and Gurley porosity (52.50%). This environmentally sustainable ultrafiltered biopulping approach for sugarcane bagasse has the potential to decrease the demand of chemicals, ultimately pollution along with enhance the quality of paper.


Assuntos
Saccharum , Álcalis , Celulose , Papel
10.
Environ Sci Pollut Res Int ; 27(27): 34574-34582, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32681331

RESUMO

In this study, suitability of xylano-pectinolytic enzymes in pulping of wheat straw has been explored. The suitable biopulping conditions were optimized, with xylanase dose of 400 and pectinase dose of 120 IU/g wheat straw, 1:10 (g/ml) material to liquid ratio, 55 °C temperature, 3 h treatment time, 0.75% Tween 80 and pH 8.5. Enzymatic pretreatment efficiently increased the pulpability of wheat straw, generated pulp with higher yield, lower kappa number (15.67%) and rejections (59.65%) in comparison with chemical pulp. The brightness of pretreated wheat straw pulp with enzyme was 16.04% higher than that of the non-enzyme treated wheat straw pulp. The biopulping resulted in 12% reduction of pulping chemicals along with more residual alkali content, in order to achieve similar optical and chemical properties as obtained by 100% chemically treated pulp. Physical properties of pulp also improved after enzymatic pretreatment, increasing burst index (26.50%), tear index (18.22%) and breaking length (5.56%). The enzyme plus chemical (88% pulping chemicals) treated pulp showed improvement in brightness and whiteness, with reduction in yellowness at all bleaching stages. In comparison with chemically bleached pulp, biopulp with reduced alkali dose (88%) had higher breaking length (6.63%), double fold number (51.28%), tear index (2.83%), burst index (24.31%), along with increased viscosity (6.12%) and Gurley porosity (27.50%). These results clearly suggest that biopulping of wheat straw with xylano-pectinolytic enzymes can reduce chemical loading during soda-anthraquinone pulping and also improve the quality of paper. This is the first report demonstrating the biopulping of wheat straw using crude xylano-pectinolytic enzymes.


Assuntos
Endo-1,4-beta-Xilanases , Triticum , Álcalis , Cor , Papel , Poligalacturonase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...